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Zador et al., Prog. Energ. Combust. Sci., 37 371 (2011) 

Why Quantum Chemical Reaction 
Kinetics Studies? 
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 Only Option When Experiments are not Possible or Limited 
 Combustion Conditions of P & T too Extreme to Probe 

 Accuracy (Ea) can be as Good or Better Than Experiments 
 Thermochemical Accuracy Possible 
 Ideal for Branching Ratio Predictions for Closely Competing Reactions 

 Can be a Cost Effective Alternate to Experiments 
 Hardware & Software Efficiencies Improving Constantly  

 A Balanced Approach to Kinetics Calculations Recommended 



Our Interest in Combustion 
Chemistry 

 Autoignition Chemistry 
 Low Temperature/Low Pressure Conditions 

 Bi-propellants   

 
 

 
 
 

 
 

 
 Decomposition Chemistry 

 Emerging Energetic Materials 
 Explosives 
 Ionic Liquid Propellants 
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N2H3 + NO2 Reaction Kinetics 
Perspective 

 Radical Chemistry Modelling 
 N2H4/NO2 Autoignition 

                          

 Recent Works 
 Only Theoretical Studies 

 See Raghunath et al.,  Adv. Quantum Chem., 69, 253 (2014).............k298 K, 1atm = (2.3 x 10-11) 
 See Daimon et al.,  Sci. Tech. Energetic Materials, 74, 17 (2013).......k298 K, 1atm = (1.6 x 10-14) ? 
 See Daimon et al.,  J. Propul. Power, 30, 707 (2014)………………… k298 K, 1atm = (1.9 x 10-11) 
 Also, See Kanno et al.,  DOI: 10.1021/acs.jpca.5b00987 (2015) 
                CH3NNH2 + NO2 → Products, k = (2.2 x 10-13) 
               trans-CH3NHNH + NO2 → Products k = (1.4 x 10-12) 
               cis-CH3NHNH + NO2 → Products k = (1.2 x 10-12) cm3 molecule-1 s-1 

                      

 This work 
 Pulsed Laser Photolysis - Flow Tube MS Experiments 

 First Experimental Determination 
 Ab initio Chemical Kinetics 

 Multi-reference Second-order Perturbation and Coupled-cluster Methods:  PES (Potential 
Energy Surface) 

 RRKM (Rice–Ramsperger–Kassel–Marcus) Theory and Master Equation Simulations:  k 
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Pulsed Laser Photolysis 
Fl wT A 

Pump +-E- c::=::1 
Flow-tube reactor 

QMS,EI Vacuum chamber 

Gas mixture DAS ( 
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N2H4 + hν  → N2H3 + H  σ193 nm = 450 × 10-20 cm2 molec-1  1 

NO2 + H → NO + OH  k2 = 1.3 × 10-10 cm3 molecule-1 s-1  2 

N2H4 + H → N2H3 + H2  k3 = 1.4 × 10-13 cm3 molecule-1 s-1  3 

N2H4 + OH → N2H3 + H2O  k4 = 3.6 × 10-11 cm3 molecule-1 s-1  4 

N2H3 + NO2 → N2H2 + HONO  k5     5 

N2H3 + NO2 → other products  k6     6 

HONO → loss   k7 = 1 s-1     7 

N2H3 → loss    k8 = 10 s-1     8 

H → loss    k9 = 10 s-1     9 

OH → loss    k10 = 10 s-1     10 

 

[HONO] = (k5[NO2][N2H3]o){e-k7.t – e-k’.t}/(k’ - k7) 

k’ = (k5 + k6)[NO2] + k8  

 

[N2H4] = 5 × 1014, [H] = 5 × 1012, [NO2] = 1 × 1013 to 5 × 1013 molecule cm-3  

N2H3 Source & 
Flow Tube Chemistry  
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Second-order Plot  

N2H3 + NO2 
Reaction Kinetics  

k298 K, 2 Torr N2  = (1.23 ± 0.25) × 10-11 cm3 molecule-1 s-1  



Potential Energy Surface for 
N2H3NO2 Adduct Formation  
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CASPT2/CBS 
RCCSD(T)/CBS//CASPT2 
RCCSD(T)/CBS//B3L YP 
Unit: kcaUmol 
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Potential Energy Surface for 
N2H3ONO Adduct Formation  
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MNB & DNB Energetic Materials 
Perspective 

 MNB & DNB 
 Mononitrobiuret & 1,5-dinitrobiuret (less stable)                          

 promising explosives                                                                                  HMX                            RDX    
                          

 Recent Works 
 See Geith et al., Propellants, Explosives, Pyrotechnics, 29, 3 (2004) 

 ∆Hcomb(DNB) = (5195 ± 300) kJ kg-1 (bomb calorimetry and MP2/cc-pVTZ ∆Hf) cf HMX 9435 & RDX  9560 kJ kg-1  

 Vd = 8660 ms-1, cf HMX 9100 & RDX 8750 ms-1 

 See Geith et al., Combust and Flame, 139, 358 (2004) 
 Recent synthesis (known since 1898 by Thiele)  & decomposition mechanism studies 
 Initially NH2NO2 released, followed by residues decomposing to give HNCO 

 See Liu et al., J. Phys. Chem. A 115, 8064 (2011) & Sun et al., J. Phys. Chem. A 118, 2228 
(2013) 

 Quasi-classical direct dynamics trajectory simulations to understand DNB decomposition 
 Elimination of HNN(O)OH intermediate identified 

 See Suntsova et al., Struct. Chem., 24, 745 (2013) 
 Electronic structure of DNB was studied  by two-dimensional B3LYP potential energy scans 
 Solid- and gas-phase conformers differ 

                                              

 This work 
 PESs for the thermal decomposition of MNB and DNB investigated 
 Temperature and pressure-dependent rate coefficients were calculated using micro-canonical 

transition state theory with master equation simulations 



MNB & DNB Structures 
(M06-2X/aug-cc-pVTZ level)  
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 H-bond Stabilized Conformers 
 MNB(Cs) 0 
 MNB(trans) +4.82 
 MNB(C1) +6.38 
 MNB(cis) +7.95 kcal/mol                      

 

 Double H-bond Stabilized Conformers 
 DNB(Cs) 0 
 DNB(C2v) +1.22 
 DNB(C1) +7.82 kcal/mol 

 
                     

 



Stationary Point Energies for MNB 
Th I D n 

S ecies 

MNB C 

HBC-Pl 

IMl+HNN 0 OH 

HBC-P2 

IM2+HNCO 

trans-biuret radical+ NO, 

MNB C 

HBC-P3 

IM3+HNCO 

NH C 0 NH + NO NCO 

iso-trans-biuret radical+ NO 

M06-2X 
au -cc- VDZ 

0.00 

33.86 

18.50 

29.42 

34.58 

27.75 

30.43 

51.41 

6.41 

41.05 

34.23 

40.33 

53.77 

34.38 

57.25 

7.84 

M06-2X 
au -cc- VTZ 

0.00 

33.18 

20.51 

26.85 

33.73 

26.20 

32.17 

51.34 

6.38 

40.35 

32.65 

38.46 

54.71 

32.53 

56.99 

8.29 

RCCSD(T)/cc-pVooZ 
M06-2X au -cc- VTZ 

0.00 

33.99 

19.43 

27.08 

34.66 

26.41 

32.95 

52.75 

5.86 

41.00 

32.47 

38.77 

53.71 

30.68 

58.43 

7.32 

All energies include zero-point corrections and are in kcal/mol relative to the global energy 
minimum of MNB (C

5
) . 

W ithin 1.0 kcal/mol for the barrier heights, and 1.8 kcal/mol for endothermicities compared to 
RCCSD(T)/cc-pVooZffM06-2X/aug-cc-pVTZ, implying that the M06-2X/aug-cc-pVTZ energies 
are good for larger analogous systems. 
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Potential Energy Surface for MNB 
Decomposition  

RCCSD(T)/cc-pV∞Z//M06-2X/aug-cc-pVTZ  

32.95 

Unit: kcal/mol 

... 
)tt,. 

~ 

TS2 
34.66 

TS1 
33.99 ...... 

.... It 

"' ... .... JI 

HBC-P1 
19.43 

.,_.._ .... . ~ .. 
TS5 
7.32 

TS3 
41.00 

32.47 
HBC-P3 

5.86 

TS4 
53.71 

~ ... jJ .. 
38.77 + . .. 

30.68 
27.08 

::~ + --~ 



Ab initio Kinetics of MNB Thermal 

IOU 

l OU ----+--- k1, MNB (C.) 

10"' .............. k., MNB (C.) 

100 
.. 0 · k3, MNB (C

1
) 

10' 
... <> k, , MNB (C1) 

Q 
.. k5 , MNB (C1) 

10' 

100 

1()' \ :e 
"" 10 '\ 

101 \ 

10' 
q 

\ 
10' 

\ 
1QO Q \ 

1D-' \ 
10' 

1Q-> 

05 1 0 1 5 2 0 

Ten-perature 1000fT(K) 

High-pressure rate limit for MNB (C8 ) and MNB (C1) 

primary thermal decomposition channels 

k1 ~ = 1.32 x 1onp.131 exp (-17474.7/T) 
k2: ~ = 1.05 x 10n ro·112 exp (-17692.1/T) 
k3 ~ = 1.15 x 1014 r -0.111 exp (-1801 1.4/T) 
k4• ~ = 1.26 x 104 T2539 exp (-21375.5/T) 
k5: ~ = 2.07 x 1023 r-2 oo2 exp (-27714.8/T) 

Below 1200 K, HNCO & HNN(O)OH eliminations 
dominate, consistent with experimental work of 
Gieth eta/. 2004 

Above 1200 K, N02 elimination dominates 
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channels 

Pressure dependence of unimolecular decomposition 
evaluated using AEdown = 200 x (T/300)0•85 cm·1 energy 
transfer probability model 

Strong pressure dependences observed 

HNCO & HNN(O)OH eliminations are competitive & 
dominate below 2500 K 

N02 elimination becomes competitive only above 2500 K 

R2 & R3 (HNCO) & R1 (HNN{O)OH) are primary (product) 
channels at ignition temperatures 



Stationary Point Energies for DNB 
Th I D n 

33.77 

20.30 

26.79 

31.21 

29.98 

36.91 

49.79 

51.09 

1.22 

28.61 

21.70 

27.26 

52 84 

7.82 

9.42 10.32 

11.20 

All energies include zero-point corrections and are in kcal/mol relative to the global energy minimum of DNB (C
5

) . 

Predicted energy barrier heights from these two levels of calculation show excellent agreement, but discrepancy 
reaches to 2.1 kcal/mol for reaction endothermicities. Consequently, the M06-2X/aug-cc-pVTZ energies were 
used for carrying out the kinetics analysis for DNB decomposition. 
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Potential Energy Surface for DNB 
Decomposition  
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Ab initio Kinetics of DNB Thermal 
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Below 1500 K, HNN(O)OH elimination dominates 
from DNB (C2v) 

Above 1500 K, N02 elimination dominates 
from DNB (C2vl 

Similar trend seen in Liu eta/., 2011, and good 
agreement above 1500 K 

k8 for HNN(O)OH elimination from DNB is much larger 
than k1 for HNN(O)OH from MNB below 800 K 

Consistent with TS1 (and TS3) energy higher than TSS 
(Also, TS2 higher than TS7) 

TSS is stabilized by additional intramolecular H-bonding 
(Also, TS7 is a late transition state) 
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DNB is less stable than MNB 

Present quantitative interpretations 
are consistent with experimental work 
of Gieth eta/. 2004 
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Conclusions & 
Acknowledgements 

 N2H3 + NO2 addition reaction is fast 
 trans-N2H2 + trans-HONO main products  

 PES surface characterized 
 Calculated reaction rate coefficients in agreement with experiments 

 MNB & DNB stabilized via 6-member-ring moieties involving intramolecular H-bonding 
 Solid state conformers have smallest dipole moment 

 Energy barriers and endothermicities at the M06-2X/aug-cc-pVTZ level of theory show 
remarkable agreement with the values obtained from RCCSD(T)/cc-pV∞Z//M06-2X/aug-cc-
pVTZ computations 
 Former level of theory should be applicable to larger analogous systems 

 MNB decomposition initiated by the elimination of HNCO and HNN(O)OH, the latter is also 
released in DNB (C2v) decomposition 

 Energy barrier for HNN(O)OH elimination in DNB is 6.60 kcal/mol lower than that in MNB 
due to an extra hydrogen bond in the transition state for the former 
 DNB less stable than MNB (as previously shown by experiments) 

 




